Für eine Schleife geworfen: Verständnis für Schleifen und Zeitüberschreitungen in JavaScript

Oft funktioniert JavaScript einfach. Und weil es in einer für Menschen lesbaren Syntax geschrieben ist, scheinen bestimmte Dinge intuitiv zu sein. Aber es ist leicht zu ignorieren, was auf einer tieferen Ebene passiert. Letztendlich führt dieses Unverständnis jedoch dazu, dass ein Problem nicht gelöst werden kann.

Intuition ist die Fähigkeit, etwas sofort zu verstehen, ohne dass bewusstes Denken erforderlich ist. - Google

Ich verbringe ziemlich viel Zeit damit, zweidimensionale Probleme zu lösen, und ein etwas größerer Teil davon versucht, dreidimensionale Probleme zu lösen.

Während ich in meiner Freizeit gerne das Codieren übe, bin ich tagsüber Fluglotse. Die Probleme, mit denen wir als Fluglotsen konfrontiert sind, unterscheiden sich nicht von anderen Jobs. Es gibt Routineprobleme mit Routinelösungen und einzigartige Probleme mit einzigartigen Lösungen. Durch ein tieferes Verständnis können wir die einzigartigen lösen.

Von außen betrachtet scheint die Flugsicherung alles ein einzigartiges Problem zu sein - es gibt eine inhärente erforderliche Fähigkeit, um die Arbeit zu erledigen. Während bestimmte Fähigkeiten das Erlernen von Fähigkeiten erleichtern können, ist es letztendlich die Erfahrung, die das Lösen von Problemen auf eine unbewusste Ebene treibt. Das Ergebnis ist Intuition.

Intuition folgt Beobachtung. Beobachten Sie ein einzigartiges Problem oft genug, und es und seine Lösung werden zur Routine. Es geht darum, die Konsistenzen in jeder Situation zu bemerken, in der wir beginnen, ein Gefühl dafür zu entwickeln, was als nächstes passieren sollte .

Intuition ist nicht, erfordert jedoch ein tiefes Verständnis. Wir können oft auf die richtige Lösung hinweisen, ohne artikulieren zu können, wie oder warum es funktioniert. Manchmal jedoch, wählten wir Lösungen , die scheinen intuitiv , sondern sind in der Tat von einer unbekannten Menge von Regeln.

Was gibt dieser Code aus?

for(var i = 1; i < 6; i++) { setTimeout(function() { console.log(i); },1000); } console.log('The loop is done!');

Nehmen Sie sich etwas Zeit, um zu überlegen, was dieser Code ausgeben wird. Wir werden damit beginnen, die Grundlage zu schaffen, um darauf zu antworten, und wir werden später darauf zurückkommen.

JavaScript ist ein Sprachdialekt.

Ich bin im Nordosten der USA aufgewachsen. Obwohl ich Englisch spreche, enthält meine Rede zweifellos regionale Vielfalt. Diese Sorte nennt man Dialekt . Mein besonderer Dialekt ist eine Implementierung (oder Version) des englischen Sprachstandards.

Es mag scheinen, als würden Standards Dialekte hervorbringen, aber es ist der Dialekt, der anfänglich die Notwendigkeit von Standards antreibt. JavaScript ist ähnlich. JavaScript ist der Dialekt, nicht der Standard. Der Standard ist ECMAScript , erstellt von ECMA - der European Computer Manufacturers Association. ECMAScript ist ein Versuch, JavaScript zu standardisieren.

Es gibt mehr als eine Implementierung von ECMAScript, aber JavaScript ist am beliebtesten, weshalb der Name JavaScript und ECMAScript häufig synonym verwendet werden.

JavaScript läuft in einer Engine.

JavaScript ist nur eine Textdatei. Wie ein Fahrer ohne Auto kann es nicht sehr weit gehen. Etwas muss Ihre Datei ausführen oder interpretieren. Dies wird von einer JavaScript-Engine durchgeführt.

Einige Beispiele für JavaScript-Engines sind V8, die von Google Chrome verwendete Engine. SpiderMonkey, die von Mozilla Firefox verwendete Engine; und JavaScriptCore, die von Apple Safari verwendete Engine. ECMAScript, der Sprachstandard, stellt die Konsistenz zwischen den verschiedenen JavaScript-Engines sicher.

JavaScript-Engines werden in einer Umgebung ausgeführt.

Während JavaScript an verschiedenen Orten ausgeführt werden kann (z. B. Node.js, eine beliebte serverseitige Technologie, führt JavaScript aus und verwendet dieselbe V8-Engine wie Google Chrome), ist ein Webbrowser der häufigste Ort, um eine JavaScript-Engine zu finden.

Innerhalb des Browsers ist die JavaScript-Engine nur ein Teil einer größeren Umgebung, die dazu beiträgt, unseren Code zum Leben zu erwecken. Diese Umgebung besteht aus drei Hauptteilen, die zusammen die sogenannte Laufzeitumgebung bilden .

Der Aufrufstapel

Der erste Teil ist der Speicherort des aktuell ausgeführten Codes. Dies wird als Aufrufstapel bezeichnet. In JavaScript gibt es nur einen Aufrufstapel. Dies wird wichtig, wenn wir unsere Grundlage weiter aufbauen.

Hier ist ein vereinfachtes Beispiel für den Aufrufstapel:

function doSomething() { //some other code doSomethingElse(); //some other code } function doSomethingElse() { //some other code } doSomething();

Der anfängliche Aufrufstapel ist leer, da kein laufender Code vorhanden ist. Wenn unsere JavaScript-Engine endlich den ersten Funktionsaufruf erreicht doSomething(), wird sie dem Stapel hinzugefügt:

--Call Stack-- doSomething;

Innerhalb von führen doSomething()wir einen anderen Code aus und erreichen danndoSomethingElse():

--Call Stack-- doSomething doSomethingElse

Wenn doSomethingElse()die Ausführung abgeschlossen ist, wird sie aus dem Aufrufstapel entfernt:

--Call Stack-- doSomething

Schließlich doSomething()beendet den restlichen Code, und auch aus dem Call - Stack entfernt wird:

--Call Stack-- Empty

Web-APIs

Der zweite Teil unserer Browser-Umgebung füllt eine Lücke. Überraschenderweise gehören Dinge wie die Interaktion mit dem DOM, das Erstellen von Serveranforderungen und die meisten browserbasierten Aufgaben nicht zum ECMAScript-Sprachstandard.

Glücklicherweise bieten uns Browser zusätzliche Funktionen, an die sich unsere JavaScript-Engine anschließen kann. Diese Funktionen erweitern die Funktionalität von JavaScript im Browser. Sie ermöglichen es uns, beispielsweise auf Ereignisse zu warten oder Serveranforderungen zu stellen - Dinge, die JavaScript nicht alleine tun kann. Und sie werden als Web-APIs bezeichnet .

Viele Web-APIs ermöglichen es uns, zuzuhören oder auf etwas zu warten. Wenn dieses Ereignis eintritt, führen wir einen anderen Code aus.

Hier ist unser Call-Stack-Beispiel, das um eine (vorgetäuschte) Web-API erweitert wurde.

function doSomething() { //some other code listenForClick(); doSomethingElse(); //some other code } function doSomethingElse() { //some other code } listenForClick() { console.log('the button was clicked!') } doSomething();

Wenn der Browser auf etwas stößt doSomething(), wird es in den Aufrufstapel gestellt:

--Call Stack-- doSomething

Dann führt es einen anderen Code aus und trifft dann auf listenForClick(...):

--Call Stack-- doSomething listenForClick

listenForClick() wird in eine Web-API eingesteckt und in diesem Fall aus unserem Aufrufstapel entfernt.

Die JavaScript-Engine fährt nun fort mit doSomethingElse():

--Call Stack-- doSomething doSomethingElse

doSomethingElse()und doSomething()beenden, und der Aufrufstapel ist leer. Aber was ist passiert listenForClick()?

Ereigniswarteschlange

This is where we introduce the final part of our browser environment. Often, our web API code is a function that takes a callback. A callback is just some code we want to run after another function runs. For example, listening for a click event and then console.log something. In order to make sure our console.log doesn’t interfere with any currently running code, it first passes to something called an event queue.

The event queue acts as a waiting area until our call stack is empty. Once the call stack is empty, the event queue can pass our code into the call stack to be run. Let’s continue to build upon our previous example:

function doSomething() { //some other code listenForClick(); doSomethingElse(); //some other code } function doSomethingElse() { //some other code } listenForClick() { console.log('the button was clicked!') } doSomething();

So now, our code runs like this:

Our engine encounters doSomething():

--Call Stack-- doSomething

doSomething() runs some code and then encounters listenForClick(...). In our example, this takes a callback, which is the code we want to run after the user clicks a button. The engine passes listenForClick(…) out of the call stack and continues until it encounters doSomethingElse():

--Call Stack-- doSomething doSomethingElse

doSomethingElse() runs some code, and finishes. By this time, our user clicks the button. The web API hears the click and sends the console.log() statement to the event queue. We’ll pretend doSomething() is not done; therefore, the call stack is not empty, and the console.log() statement must wait in the event queue.

--Call Stack-- doSomething

After a few seconds, doSomething() finishes and is removed from the call stack:

--Call Stack-- EMPTY

Finally, the console.log() statement can get passed into the call stack to be executed:

--Call Stack-- console.log('The user clicked the button!')

Keep in mind, our code is running incredibly fast — taking single-digit milliseconds to finish. It isn’t realistic we could start our code, and our user could click a button before the code is done running. But in our simplified example, we pretend that this is true, to highlight certain concepts.

Together, all three parts (the call stack, the web APIs, and the event queue) form what is called the concurrency model, with the event loop managing the code that goes from the event queue into the call stack.

Take aways from the above examples:

JavaScript can only do one thing at a time.

There is a misconception that people can multi-task. This isn’t true. People can, however, switch between tasks, a process called task switching.

JavaScript is similar in the sense that it can’t multitask. Because JavaScript has only one call stack, the JavaScript engine can only do one task at a time. We say this makes JavaScript single threaded. Unlike people, however, JavaScript can’t task switch without the help of our web APIs.

JavaScript must finish a task before moving on.

Because JavaScript can’t switch back and forth between tasks, if you have any code that takes a while to run, it will block the next line of code from running. This is called blocking code, and it happens because JavaScript is synchronous. Synchronous simply means that JavaScript must finish a task before it can start another one.

An example of blocking code might be a server request which requires us to wait for data to be returned. Fortunately, the web APIs provided by the browser give us a way around this (with the use of callbacks).

By moving blocking code from the call stack into the event loop, our engine can move on to the next item in the call stack. Therefore, with code running in our call stack, and code that is simultaneously running in a web API, we have asynchronous behavior.

Not all web APIs, however, go into the event loop. For example, console.log is a web API, but since it has no callback and doesn’t need to wait for anything, it can be executed immediately.

Do keep in mind that single threaded is not the same as synchronous. Single threaded means “one thing at a time.” Synchronous means “finish before moving on.” Without the help of asynchronous APIs, core JavaScript is both single threaded and synchronous.

The scoop on scope

Before we return to our original question, we need to touch on scope. Scope is the term used to describe which parts of our code have access to which variables.

Intuitively, it may seem that a variable declared and initialized by a for loop would only be available within that for loop. In other words, if you tried to access it outside of the loop, you would get an error.

This isn’t the case. Declaring a variable with the varkeyword creates a variable that is also available in its parent scope.

This example shows that a variable declared by var within a for loop is also available within the parent scope (in this case, the global scope).

for(var a = 1; a < 10; a++) {} // declared "inside" the loop console.log(a); // prints "10" and is called "outside the loop"

The answer revealed

At this point, we’ve discussed enough to build our answer.

Here is our example revisited:

for(var i = 1; i < 6; i++) { setTimeout(function() { console.log(i); },1000); } console.log('The loop is done!');

Intuitively, you might believe this will print the numbers one through five, with one second between each number being printed:

// one second between each log 1 2 3 4 5 The loop is done!

However, what we actually output is:

The loop is done! // then about one second later and all at once 6 6 6 6 6

What’s happening?

Recall our discussion about web APIs. Asynchronous web API’s, or those with callbacks, go through the event loop. setTimeout()happens to be an asynchronous web API.

Every time we loop, setTimeout() is passed outside of the call stack and enters the event loop. Because of this, the engine is able to move to the next piece of code. The next piece of code happens to be the remaining iterations of the loop, followed by console.log(‘The loop is done!’).

To show the setTimeout() statements are being passed from the call stack, and the loop is running, we can place a console.log() statement outside of the setTimeout() function and print the results. We can also place a built-in timer method to show just how quickly everything is happening. We use console.time() and console.timeEnd() to do this .

console.time('myTimer'); for(var i = 1; i { console.log(i); },1000); } console.log('The loop is done!'); console.timeEnd('myTimer');

Results:

Loop Number 1 Loop Number 2 Loop Number 3 Loop Number 4 Loop Number 5 The loop is done! // then, about one second later and all at once: 6 6 6 6 6 myTimer: 1.91577ms // Wow, that is quick!

First, we can see the loop is in fact running. In addition, the timer we added tells us that everything other than our setTimeout() functions took less than two milliseconds to run! That means each setTimeout() function has about 998 milliseconds remaining before the code it contains goes into the event queue and then finally into the call stack. Remember earlier when I said it would be difficult for a user to be faster than our code!

If you run this code multiple times, you will likely notice the timer output will change slightly. This is because your computer’s available resources are always changing and it might be slightly faster or slower each time.

So here is what’s happening:

  1. Our engine comes across our for loop. We declare and initialize a global variable named i equal to one.
  2. Each iteration of loop passes setTimeout() to a web API and into the event loop. Therefore, our for loop finishes very quickly, since there is no other code inside of it to run. In fact, the only thing our loop does is change the value of i to six.
  3. At this point, the loop is over, our setTimeout() functions are still counting down, and all that remains in the call stack is console.log(‘The loop is done!’).
  4. Fast forward a bit, and the setTimeout() functions have finished, and the console.log(i) statements go into the event queue. By this time, our console.log(‘The loop is done!’) has been printed and the call stack is empty.
  5. Since the call stack is empty, the fiveconsole.log(i) statements get passed from the event queue into the call stack.
  6. Remember, i is now equal to six, and that’s why we see five sixes printed to the screen.

Let’s create the output we thought we would get

Up to this point, we’ve discussed the actual output of a few simple lines of code that turned out to be not-so-simple. We’ve talked about what’s happening on a deeper level and what the result is. But, what if we want to create the output we thought we would get? In other words, how can we reverse engineer the following results:

1 // after one second, then 2 // one second later (2 seconds total) 3 // one second later (3 seconds total) 4 // one second later (4 seconds total) 5 // one second later (5 seconds total) 'The loop is done!' // one second later (6 seconds total)

Does the duration on our timeout change anything?

Setting the timeout’s duration to zero seems like a possible solution. Let’s give it a try.

for(var i = 1; i { console.log(i); },0); } console.log('The loop is done!');

Results:

// Everything appears (essentially) at once The loop is done! 6 6 6 6 6

It still didn’t work. What happened?

Remember, just because the duration of setTimeout() is zero, it is still asynchronous and handled by a web API. Regardless of the duration, it will be passed to the event queue and then the call stack. So even with a timeout of zero, the process remains the same, and the output is relatively unchanged.

Notice I said relatively. One thing you may have noticed that was different, was everything printed almost at once. This is because the duration of setTimeout() expires instantly, and its code gets from the web API, into the event queue, and finally into the call stack almost immediately. In our previous example, our code had to wait 1000 milliseconds before it went into the event queue and then the call stack.

So, if changing the duration to zero didn’t work, now what?

Revisiting Scope

What will this code output?

 function myFunction1() { var a = 'Brandon'; console.log(a); } function myFunction2() { var a = 'Matt'; console.log(a); } function myFunction3() { var a = 'Bill'; console.log(a); } myFunction1() myFunction2() myFunction3()

Notice how each function uses the same variable named a. It would seem each function might throw an error, or possibly overwrite the value of a.

Results:

Brandon Bill Matt

There is no error, and a is unique each time.

It appears the variable a is unique to each function. It’s very similar to how an address works. Street names and numbers are invariably shared across the world. There is more than a single 123 Main St. It’s the city and state which provide scope to which address belongs where.

Functions work in the same way. Functions act as a protective bubble. Anything inside of that bubble can’t be accessed by anything outside. This is why the variable a is not actually the same variable. It’s three different variables located in three different places in memory. They just so happen to all share the same name.

Applying the principles of scope to our example:

We know we have access to the iterative value of i, just not when the setTimeout() statements finish. What if we take the value of i and package it with the setTimeout() statement in its own bubble (as a way to preserve i)?

for(var i = 1; i <6; i++) { function timer(){ // create a unique function (scope) each time var k = i; // save i to the variable k which setTimeout(()=>{ console.log(k); },1000); } timer(); }

Result:

The loop is done! 1 2 3 4 5

It almost works. What did we do?

We are beginning to get into the topic of closures. A deep discussion on closures goes beyond the scope of this article. However, a brief introduction will help our understanding.

Remember, each function creates a unique scope. Because of this, variables with the same name can exist in separate functions and not interfere with each other. In our most recent example, each iteration created a new and unique scope (along with a new and unique variable k). When the for loop is done, these five unique values of k are still in memory and are accessed appropriately by our console.log(k) statements. That is closure in a nutshell.

In our original example where we declare i with var, each iteration overwrote the value of i (which in our case was a global variable).

ES6 makes this much cleaner.

In 2015, ECMAScript released a major update to its standards. The update contained many new features. One of those features was a new way to declare variables. Up to this point, we have used the var keyword to declare variables. ES6 introduced the let keyword.

for(let i = 1; i { console.log(i); },1000); } console.log('The loop is done!');

Results:

The loop is done! 1 2 3 4 5

Just by changing var to let, we are much closer to the result we want.

A brief introduction to “let” vs “var”

In our example, let does two things:

First, it makes i available only inside our for loop. If we try to log i outside of the loop, we get an error. This is because let is a block scope variable. If it is inside a block of code (such as a for loop) it can only be accessed there. var is function scoped.

An example to show let vs var behavior:

function variableDemo() { var i = 'Hello World!'; for(let i = 1; i < 3; i++) { console.log(i); // 1, 2, 3 } console.log(i); // "Hello World!" // the for-loop value of i is hidden outside of the loop with let } variableDemo(); console.log(i); //Error, can't access either value of i

Notice how we don’t have access to either i outside of the function variableDemo(). This is because ‘Hello World’ is function scoped, and i is block scoped.

The second thing let does for us is create a unique value of i each time the loop iterates. When our loop is over, we have created six separate values of i that are stored in memory that our console.log(i) statements can access. With var, we only had one variable that we kept overwriting.

The loop is not done.

We’re almost there. We still are logging 'The loop is done!' first, and we aren’t logging everything one second apart. First, we will look at two ways to address the The loop is done! output.

Option 1: Using setTimeout() and the concurrency model to our advantage.

This is fairly straightforward. We want The loop is done! to pass through the same process as the console.log(i) statements. If we wrap The loop is done! in a setTimeout() whose duration is greater to or equal than the for loop timeouts, we ensure The loop is done! arrives behind and expires after the last for loop timeouts.

We’ll break up our code a bit to make it a bit clearer:

function loopDone() { // we will call this below console.log('The loop is done!)' } for(let i = 1; i { console.log(i); },1000); } setTimeout(loopDone, 1001);

Results:

1 2 3 4 5 The loop is done!

Option 2: Check for the final console.log(i) completion

Another option is to check when the console.log(i) statements are done.

function loopDone() { console.log('The loop is done!'); } for(let i = 1; i { console.log(i); if(i === 5){ // check when the last statement has been logged loopDone(); } },1000); }

Results:

1 2 3 4 5 The loop is done!

Notice that we placed our loop completion check within the setTimeout() function, not within the main body of the for loop.

Checking when the loop is done won’t help us, since we still must wait for the timeouts to complete. What we want to do is check when the console.log(i) statements are done. We know this will be after the value of i is 5 and after we’ve logged it. If we place our loop completion check after the console.log(i) statement, we can ensure we’ve logged the final ibefore we run loopDone().

Getting everything to happen one second apart.

Everything is happening essentially at the same time because the loop is so fast, and all the timeouts arrive at the web API within milliseconds of each other. Therefore, they expire around the same time and go to the event queue and call stack around the same time.

We can’t easily change when they arrive at the web API. But we can, with the unique value of each i, delay how long they stay there.

function loopDone() { console.log('The loop is done!'); } for(let i = 1; i { console.log(i); if(i === 5){ loopDone(); } },i * 1000); // multiple i by 1000 }

Since i is now unique (because we are using let), if we multiply i by 1000, each timeout will last one second longer than the previous timeout. The first timeout will arrive with a 1000 millisecond duration, the second with 2000 and so forth.

Although they arrive at the same time, it will now take each timeout one second longer than the previous to pass to the event queue. Since our call stack is empty by this point, it goes from the event queue immediately into the call stack to be executed. With each console.log(i) statement arriving one second apart in the event queue, we will almost have our desired output.

1 // after one second, then 2 // one second later (2 seconds total) 3 // one second later (3 seconds total) 4 // one second later (4 seconds total) 5 // one second later (5 seconds total) 'The loop is done!' // still occurs with the final log

Notice that The loop is done! is still arriving with the last console.log(i) statement, not one second after it. This is because when i===5loopDone() is run. This prints both the i and The loop is done! statements around the same time.

We can simply wrap loopDone() in a setTimeout() to address this.

function loopDone() { console.log('The loop is done!'); } for(let i = 1; i { console.log(i); if(i === 5){ setTimeout(loopDone, 1000); // update this } },i * 1000); }

Results:

1 // after one second, then 2 // one second later (2 seconds total) 3 // one second later (3 seconds total) 4 // one second later (4 seconds total) 5 // one second later (5 seconds total) 'The loop is done!' // one second later (6 seconds total)

We finally have the results we wanted!

Most of this article stemmed from my own struggles and the subsequent aha! moments in an attempt to understand closures and the JavaScript event loop. I hope this can make sense of the basic processes at play and serve as a foundation for more advanced discussions of the topic.

Thanks!

woz