Eine Einführung in die metrikgetriebene Entwicklung: Was sind Metriken und warum sollten Sie sie verwenden?

Eines der coolsten Dinge, die ich im letzten Jahr gelernt habe, ist, wie man ständig Wert in die Produktion bringt, ohne zu viel Chaos zu verursachen.

In diesem Beitrag erkläre ich den metrikgesteuerten Entwicklungsansatz und wie er mir dabei geholfen hat. Am Ende des Beitrags können Sie die folgenden Fragen beantworten:

  • Was sind Metriken und warum sollte ich sie verwenden?
  • Was sind die verschiedenen Arten von Metriken
  • Welche Tools könnte ich zum Speichern und Anzeigen von Metriken verwenden?
  • Was ist ein reales Beispiel für eine metrikgesteuerte Entwicklung?

Was sind Metriken und warum sollte ich sie verwenden?

Mithilfe von Metriken können Sie Informationen zu einem aktiv laufenden System sammeln, ohne dessen Code zu ändern.

Sie können wertvolle Daten zum Verhalten Ihrer Anwendung während der Ausführung abrufen, um datengesteuerte Entscheidungen auf der Grundlage des tatsächlichen Kundenfeedbacks und der Verwendung in der Produktion zu treffen .

Welche Arten von Metriken stehen mir zur Verfügung?

Dies sind die heute am häufigsten verwendeten Metriken:

  • Zähler - Stellt einen monoton ansteigenden Wert dar.

In diesem Beispiel wird eine Zählermetrik verwendet, um die Ereignisrate über die Zeit zu berechnen, indem Ereignisse pro Sekunde gezählt werden

  • Messgerät - Stellt einen einzelnen Wert dar, der nach oben oder unten gehen kann.

In diesem Beispiel wird eine Messmetrik verwendet, um die Benutzer-CPU in Prozent zu überwachen

  • Histogramm - Eine Zählung von Beobachtungen (wie Anforderungsdauer oder -größe) in konfigurierbaren Eimern.

In diesem Beispiel wird eine Histogrammmetrik verwendet, um das 75. und 90. Perzentil einer HTTP-Anforderungsdauer zu berechnen.

Die Bits und Bytes der Typen: Zähler, Histogramm und Messgerät können ziemlich verwirrend sein. Versuchen Sie hier weiter darüber zu lesen.

Mit welchen Tools kann ich Metriken speichern und anzeigen?

Die meisten Überwachungssysteme bestehen aus wenigen Teilen:

  1. Zeitreihendatenbank - Eine Datenbanksoftware, die das Speichern und Bereitstellen von Zeitreihendaten optimiert. Zwei Beispiele für diese Art von Datenbank sind Whisper und Prometheus.
  2. Abfrage-Engine (mit einer Abfragesprache) - Zwei Beispiele für gängige Abfrage-Engines sind: Graphite und PromQL
  3. Warnsystem - Der Mechanismus, mit dem Sie Warnungen basierend auf Diagrammen konfigurieren können, die von der Abfragesprache erstellt wurden. Das System kann diese Warnungen an Mail, Slack, PagerDuty senden. Zwei Beispiele für gängige Warnsysteme sind: Grafana und Prometheus.
  4. Benutzeroberfläche - Ermöglicht das Anzeigen der von den eingehenden Daten generierten Diagramme und das Konfigurieren von Abfragen und Warnungen. Zwei Beispiele für gängige UI-Systeme sind: Graphite und Grafana

Das Setup, das wir heute in BigPanda Engineering verwenden, ist

  • Telegraf - wird als StatsD-Server verwendet.
  • Prometheus - wird als Scrapping-Engine, Zeitreihendatenbank und Abfrage-Engine verwendet.
  • Grafana - wird für Alerting und UI verwendet

Und die Einschränkungen, die wir bei der Auswahl dieses Stapels berücksichtigt haben, waren:

  • Wir wollen skalierbares und elastisches Metrik-Scraping
  • Wir wollen eine performante Abfrage-Engine
  • Wir möchten die Möglichkeit haben, unsere Metriken mithilfe von benutzerdefinierten Tags (wie Dienstnamen, Hosts usw.) abzufragen.

Ein reales Beispiel für die metrikgesteuerte Entwicklung eines Sentiment Analysis-Dienstes

Lassen Sie uns einen neuen Pipeline-Service entwickeln, der Gefühle basierend auf Texteingaben berechnet und dies auf metrikgesteuerte Weise ausführt!

Angenommen, ich muss diesen Pipeline-Service entwickeln:

Und das ist mein üblicher Entwicklungsprozess:

Also schreibe ich folgende Implementierung:

let senService: SentimentAnalysisService = new SentimentAnalysisService(); while (true) { let tweetInformation = kafkaConsumer.consume() let deserializedTweet: { msg: string } = deSerialize(tweetInformation) let sentimentResult = senService.calculateSentiment(deserializedTweet.msg) let serializedSentimentResult = serialize(sentimentResult) sentimentStore.store(sentimentResult); kafkaProducer.produce(serializedSentimentResult, 'sentiment_topic', 0); } 

Das vollständige Wesentliche finden Sie hier.

Und T seine Methode funktioniert perfekt in Ordnung .

Aber was passiert, wenn es nicht so ist ?

Die Realität ist, dass wir während der Arbeit (in einem agilen Entwicklungsprozess) Fehler machen. Das ist eine Tatsache des Lebens.

Ich glaube, dass die eigentliche Herausforderung bei Fehlern nicht darin besteht, sie zu vermeiden, sondern zu optimieren, wie schnell wir sie erkennen und reparieren. Wir müssen also die Fähigkeit erlangen , unsere Fehler schnell zu entdecken.  

Es ist Zeit für den MDD-Weg.

Der Weg der Metrics Driven Development (MDD)

The MDD approach is heavily inspired by the Three Commandments of Production (which I had learned about the hard way).

The Three Commandments of Production are:

  1. There are mistakes and bugs in the code you write and deploy.
  2. The data flowing in production is unpredictable and unique!
  3. Perfect your code from real customer feedback and usage in production.

And since we now know the Commandments, it's time to go over the 4 step plan of the Metrics-Driven development process.

The 4-step plan for a successful MDD

Develop code 

I write the code, and whenever possible, wrap it with a feature flag that  allows me to gradually open it for users.

Metrics

This consists of two parts:

Add metrics on relevant parts

In this part, I ask myself what are the success or failure metrics I can define to make sure my feature works? In this case, does my new pipeline application perform its logic correctly?

Add alerts on top of them so that I’ll be alerted when a bug occurs

In this part, I ask myself What metric could alert me if I forgot something or did not implement it correctly?

Deployment

I deploy the code and immediately monitor it to verify that it’s behaving as I have anticipated.

Iterate this process to perfection

And that's it! Now that we have learned the process, let's tackle an important task inside it.

Metrics to Report — what should we monitor?

One of the toughest questions for me, when I’m doing MDD, is: “what should I monitor”?

In order to answer the question, lets try to zoom out and look at the big picture.

All the possible information available to monitor can be divided into two parts:

  1. Applicative information — Information that has an applicative context and meaning. An example of this will be — “How many tweets did we classify as positive in the last hour”?
  2. Operational information — Information that is related to the infrastructure that surrounds our application — Cloud data, CPU and disk utilization, network usage, etc.

Now, since we cannot monitor everything, we need to choose what applicative and operational information we want to monitor.

  • The operational part really depends on your ops stack and has built-in solutions for (almost) all your monitoring needs.
  • The applicative part is more unique to your needs, and I'll try to explain how I think about it later in this post.

After we do that, we can ask ourselves the question: what alerts do we want to set up on top of the metrics we just defined?

The diagram (of information, metrics, alerts) can be drawn like this:

Applicative metrics

I usually add applicative metrics out of two needs:

To answer questions

A question is something like, “When my service misbehaves, what information would be helpful to know about?”

Some answers to that question can be — latencies of all IO calls, processing rate, throughput, etc…

Most of these questions will be helpful while you are searching for the answer. But once you found it, chances are you will not look at it again (since you already know the answer).

These questions are usually driven by RND and are (usually) used to gather information internally.

To add Alerts

This may sound backward, but I usually add applicative metrics in order to define alerts on top of them. Meaning, we define the list of alerts and then deduce from them what are the applicative metrics to report.

These alerts are derived from the SLA of the product and are usually treated with mission-critical importance.

Common types of alerts

Alerts can be broken down into three parts:

SLA Alerts

SLA alerts surround the places in our system where an SLA is specified to meet explicit customer or internal requirements (i.e availability, throughput, latency, etc.). SLA breaches involve paging RND and waking people up, so try to keep the alerts in this list to a minimum.

Also, we can define Degradation Alerts in addition to SLA Alerts.

Degradation alerts are defined with lower thresholds then SLA alerts, and are therefore useful in reducing the amount of SLA breaches — by giving you a proper heads-up before they happen.

An example of an SLA alert would be, “All sentiment requests must finish in under 500ms.”

An example of a Degradation Alert will be: “All sentiment requests must finish in under 400ms”.

These are the alerts I defined:

  1. Latency — I expect the 90th percentile of a single request duration not to exceed 300ms.
  2. Success/Failure ratio of requests — I expect the number of failures per second, success per second, to remain under 0.01.
  3. Throughput — I expect that the number of operations per second (ops) that the application handles will be > 200
  4. Data Size — I expect the amount of data that we store in a single day should not exceed 2GB.
200 ops * 60 bytes(Size of Sentiment Result)* 86400 sec in a day = 1GB < 2GB

Baseline Breaching Alerts

These alerts usually involve measuring and defining a baseline and making sure it doesn’t (dramatically) change over time with alerts.

For example, the 99th processing latency for an event must stay relatively the same across time unless we have made dramatic changes to the logic.

These are the alerts I defined:

  1. Amount of Positive or Neutral or Negative Sentiment tweets — If for whatever reason, the sum of Positive tweets has increased or decreased dramatically, I might have a bug somewhere in my application.
  2. All latency \ Success ratio of requests \ Throughput \ Data size must not increase\decrease dramatically over time.

Runtime Properties Alerts

I’ve given a talk about Property-Based Tests and their insane strength. As it turns out, collecting metrics allows us to run property-based tests on our system in production!

Some properties of our system:

  1. Since we consume messages from a Kafka topic, the handled offset must monotonically increase over time.
  2. 1 ≥ sentiment score ≥ 0
  3. A tweet should classify as either Negative \ Positive \ Neutral.
  4. A tweet classification must be unique.

These alerts helped me validate that:

  1. We are reading with the same group-id. Changing consumer group ids by mistake in deployment is a common mistake when using Kafka. It causes a lot of mayhem in production.
  2. The sentiment score is consistently between 0 and 1.
  3. Tweet category length should always be 1.

In order to define these alerts, you need to submit metrics from your application. Go here for the complete metrics list.

Using these metrics, I can create alerts that will “page” me whenever one of these properties do not hold anymore in production.

Let’s take a look at a possible implementation of all these metrics

import SDC = require("statsd-client"); let sdc = new SDC({ host: 'localhost' }); let senService: SentimentAnalysisService; //... while (true) { let tweetInformation = kafkaConsumer.consume() sdc.increment('incoming_requests_count') let deserializedTweet: { msg: string } = deSerialize(tweetInformation) sdc.histogram('request_size_chars', deserializedTweet.msg.length); let sentimentResult = senService.calculateSentiment(deserializedTweet.msg) if (sentimentResult !== undefined) { let serializedSentimentResult = serialize(sentimentResult) sdc.histogram('outgoing_event_size_chars', serializedSentimentResult.length); sentimentStore.store(sentimentResult) kafkaProducer.produce(serializedSentimentResult, 'sentiment_topic', 0); } } 

The full code can be found here

A few thoughts on the code example above:

  1. There has been a staggering amount of metrics added to this codebase.
  2. Metrics add complexity to the codebase, so, like all good things, add them responsibly and in moderation.
  3. Choosing correct metric names is hard. Take your time selecting proper names. Here’s an excellent post about this.
  4. You still need to collect these metrics and display them in a monitoring system (like Grafana), plus add alerts on top of them, but that’s a topic for a different post.

Did we reach the initial goal of identifying issues and resolving them faster?

We can now make sure the application latency and throughput do not degrade over time. Also, adding alerts on these metrics allows for a much faster issue discovery and resolution.

Conclusion

Metrics-driven development goes hand in hand with CI\CD, DevOps, and agile development process. If you are using any of the above keywords, then you are in the right place.

When done right, metrics make you feel more confident in your deployment in the same way that seeing passing unit-tests in your build makes you feel confident in the code you write.

Adding metrics allows you to deploy code and feel confident that your production environment is stable and that your application is behaving as expected over time. So I encourage you to try it out!

Some references

  1. Here is a link to the code shown in this post, and here is the full metrics list described.
  2. If you are eager to try writing some metrics and to connect them to a monitoring system, check out Prometheus, Grafana and possibly this post
  3. This guy wrote a delightful post about metrics-driven development. GO read it.